AntiDerivative

Integration Tips

U-Substitution

Integration By Parts

\frac{ \mathrm{d}(uv) }{ \mathrm{d}x } & =u\frac{ \mathrm{d}v }{ \mathrm{d}x }+v\frac{ \mathrm{d}u }{ \mathrm{d}x } \
\int u\frac{ \mathrm{d}v }{ \mathrm{d}x } +v\frac{ \mathrm{d}u }{ \mathrm{d}x } , dx & =uv \
\boxed{\int u , dv =uv-\int v , du }
\end

- If you have $x^{n}$ times $\sin ax$ or $\cos ax$ or $e^{ax}$, choose $u=x^{n},dv=f(x)dx$ - Don't worry if you have $dv=dx$ - If you have $\ln x$, try choosing $u=\ln x$ - If you get the original integral after integrating by parts a bunch of times, move it all to one side ### Trig Substitution - replace $\sqrt{ a^{2}-b^{2}x^{2} }$ with $bx=a\sin\theta$ to get $\sqrt{ a^{2}(1-\sin ^{2}\theta) }=|a\cos\theta|=a\cos\theta$ for $-\frac{\pi}{2}\leq \theta \leq \frac{\pi}{2}$ - Replace $\sqrt{ b^{2}x^{2}+a^{2} }$ with $bx=a\tan\theta$ and get $a\sec\theta$ for $-\frac{\pi}{2}\leq \theta \leq \frac{\pi}{2}$ - Or $bx=a\sinh u$ - Replace $\sqrt{ b^{2}x^{2}-a^{2} }$ with $bx=a\sec\theta$ to get $a\tan \theta$ for $-\pi \leq \theta \leq -\frac{\pi}{2} \cup 0 \leq \theta \leq \frac{\pi}{2}$ - Or $bx=a\cosh u$ - We can have these restrictions since they match the restrictions on the square root - you can also replace $x+c$ - Remember to switch back to $c$ - Draw triangles to help with this - remember to change $dx$ to $d\theta$ - Remember to change limits of integration - You can also use Hyperbolic Functions substitution, which can be easier