Functions

Increasing/decreasing

Transformations

Types

Parity of Function

bottom=-1; top=14;
---
y=x^{2}
y=(-x)^{2}|dashed|red
y=\frac{1}{x}
y=\frac{-1}{x}|dotted|green
y=\frac{1}{-x}|dashed|red

f(x) & =E(x)+O(x)\tag{1} \label{a} \
f(-x) & =E(-x) +O(-x) \
& =E(x)-O(x)\tag{2} \label{b} \because \text{E is even, O is odd} \
f(x)+f(-x) & =2E(x) & \eqref{a}+\eqref{b} \
E(x) & =\frac{1}{2}(f(x)+f(-x)) \
O(x) & =\frac{1}{2}(f(x)-f(-x)) \
E(x)+O(x) & =f(x)
\end

TryitforanyfunctionAlsoensurethatthedomainissymmetrical($(,)$workstoo)