Fundamental Theorem of Calculus
- Derivatives make things less continuous/smooth, integrals make things more continuous/smooth
Part One
g'(x) & =\lim_{ h \to 0 } \frac{g(x+h)-g(x)}{h} \
& =\lim_{ h \to 0 } \frac{1}{h}\left( \int_{a}^{x+h} f(t) , dt -\int_{a}^{x} f(t) , dt \right) \
& =\lim_{ h \to 0 } \frac{1}{h}\left( \int_{x}^{x+h} f(t) , dt \right) \
& =\lim_{ h \to 0 } f(c)\text{ for }c \in [x,x+h]\quad \text{ by def. of average } \
& =f(x)\quad \text{ since } c\to x \text{ as } h\to 0
\end
\begin{align}
H & =\int_{u}^{v} \cos(t^{2}) , dt \
& =\int_{u}^{a} \cos(t^{2}) , dt +\int_{a}^{v} \cos(t^{2}) , dt \
& =-\int_{a}^{u} \cos(t^{2}) , dt +\int_{a}^{v} \cos(t^{2}) , dt \
H'(x) & =-f(u) \frac{ \mathrm{d}u }{ \mathrm{d}x }+f(v)\frac{ \mathrm{d}v }{ \mathrm{d}x } \
& =e^{x}\cos(e^{2x})-2x\cos(x^{4})
\end
\begin{align}
F(b)-F(a) & =F(x_{n})-F(x_{0}) \
& =(F(x_{1})-F(x_{0}))+(F(x_{2})-F(x_{1}))+\dots+(F(x_{n})-F(x_{n-1})) \
\text{ define } t_{i} & \in (x_{i-1},x_{i}) \
F(x_{i-1})-F(x_{i}) & =F'(t_{i})(x_{i}-x_{i-1}) \text{ by MVT } \
& =f(t_{i})\Delta x_{i} \
F(b)-F(a) & =f(t_{1})\Delta x_{1}+f(t_{2})\Delta x_{2}+\dots+f(t_{n})\Delta x_{n} \
& =\sum_{i=1}^{n}f(t_{i})\Delta x_{i}
\end