Improper Integral

Definitions

af(x)dx:=limtatf(x)dxaf(x)dx:=limttaf(x)dx

If f(x) is continuous at x[a,b] except at x=a, $$
\int_{a}^{b} f(x) , dx := \lim_{ t \to a^{+} } \int_{t}^{b} f(x) , dx $$
Same thing goes for if the discontinuity is at b
If it is at c(a,b), then $$
\int_{a}^{b} f(x) , dx :=\int_{a}^{c} f(x) , dx +\int_{c}^{b} f(x) , dx