Polar Coordinates
- Angle
from the positive x-axis and magnitude - To convert between polar and standard coordinates, use
- With this, then multiplication is simply
, or - Basically, the angles are added up, and then scaled by the product of the magnitudes
- Shorthand:
- [[#De Moivre's Theorem]]
- Notice that these are properties shared by the exponential function
- So we can define
- We can prove this with Taylor Series
- Technically you can use any base if you change
- Simply set
and get very cool equation Top 1 equation
- Interesting to note: $$
\begin{align}
(cis\theta)^{2} \
\begin{split}
& cis\theta cis\theta \
& =(\cos\theta+i\sin\theta)^{2} \
& =\cos ^{2}\theta-\sin ^{2}\theta+i(2\sin\theta \cos\theta)
\end{split} &\quad
\begin{split}
& cis(2\theta) \
& =\cos(2\theta)+i\sin(2\theta)
\end{split}
\end
\begin{align}
& \left( \frac{ \mathrm{d}y }{ \mathrm{d}\theta } \right)^{2}+\left( \frac{ \mathrm{d}x }{ \mathrm{d}\theta } \right)^{2} \
& =f'(\theta)^{2}\cos ^{2}\theta\cancel{ -2f'(\theta)f(\theta)\cos\theta \sin\theta }+f(\theta)^{2}\sin ^{2}\theta+f'(\theta)^{2}\sin ^{2}\theta+\cancel{ 2f'(\theta)f(\theta)\cos\theta \sin\theta }+f(\theta)^{2}\cos ^{2}\theta \
& =f'(\theta)^{2}+f(\theta)^{2} \
dS & =\sqrt{ f'(\theta)^{2}+f(\theta)^{2} } d\theta
\end{align}$$
De Moivre's Theorem
Prove using induction and multiplicative property