Polar Coordinates

formsthetrigdoubleangleidentitiesShape:cardoid$r=1+sinθ$desmosgraphr=sinθ+1Todraw:Tofindslopesoftangentlines[[F0Glossary/ConcreteConcepts/DerivativeDerivative]],convertto$dydx=dydθdxdθ$Horizontaltangentshave$dydθ=0,dxdθ0$VerticaltangentsareoppositeIftheotheroneiszero,youcanseeifitsactuallyahorizontal/verticaltangentbytakingthelimitandapplying[[F0Glossary/ConcreteConcepts/LHôpitalsRuleLHôpitalsRule]]Totakethe[[F0Glossary/ConcreteConcepts/IntegralIntegral]],findtheareaofthecirclesectorwithradius$r$andsectorangle$dθ$Youendupwith$dA=12r2dθ=12f(x)2dθ$Theintegralisthenthesum:$A=12αβf(x)2dx$For[[F0Glossary/ConcreteConcepts/ArcLengthofCurveArcLengthofCurve]],simplydoitasnormal,butuse$dS=(dydθ)2+(dxdθ)2dθ$Noticethat$x=f(θ)cosθdxdθ=f(θ)cosθf(θ)sinθ$and$y=f(θ)sinθdydθ=f(θ)sinθ+f(θ)cosθ$Then

\begin{align}
& \left( \frac{ \mathrm{d}y }{ \mathrm{d}\theta } \right)^{2}+\left( \frac{ \mathrm{d}x }{ \mathrm{d}\theta } \right)^{2} \
& =f'(\theta)^{2}\cos ^{2}\theta\cancel{ -2f'(\theta)f(\theta)\cos\theta \sin\theta }+f(\theta)^{2}\sin ^{2}\theta+f'(\theta)^{2}\sin ^{2}\theta+\cancel{ 2f'(\theta)f(\theta)\cos\theta \sin\theta }+f(\theta)^{2}\cos ^{2}\theta \
& =f'(\theta)^{2}+f(\theta)^{2} \
dS & =\sqrt{ f'(\theta)^{2}+f(\theta)^{2} } d\theta
\end{align}$$

De Moivre's Theorem

zn=rncis(nθ) for any integer n
Prove using induction and multiplicative property