Rotations
Rotation is a Linear Transformations
- Consider a rotation by angle
- due to trig and unit circle, etc, $$
\begin{align}
T(\vec{e_{1}}) & =\left[ \begin{matrix}
\cos\theta \
\sin\theta
\end{matrix} \right] \
T(\vec{e_{2}}) & =\left[ \begin{matrix}
-\sin\theta \
\cos\theta
\end{matrix} \right] \
[T] & =\begin{bmatrix}
\cos\theta & -\sin\theta \
\sin\theta & \cos\theta
\end{bmatrix}
\end
\begin{align}
[rot_{\alpha}(rot_{\beta}\vec{x})] & =([rot\alpha][rot\beta])\vec{x} \
& =\begin{pmatrix}
\cos\alpha \cos\beta-\sin\alpha \sin\beta & -\cos\alpha \sin\beta-\sin\alpha \cos\beta \
\sin\alpha \cos\beta+\cos\alpha \sin\beta & -\sin\alpha \sin\beta+\cos\alpha \cos\beta
\end{pmatrix}
\end