Rotations

Rotation is a Linear Transformations

Nowtrytworotationsby$α$and$β$respectively,whichisacompositionoffunctionswrittenas$rotα(rotβx)$Weknowthematrixofarotation,andduetothepropertiesofcompositionoflineartransformations,

\begin{align}
[rot_{\alpha}(rot_{\beta}\vec{x})] & =([rot\alpha][rot\beta])\vec{x} \
& =\begin{pmatrix}
\cos\alpha \cos\beta-\sin\alpha \sin\beta & -\cos\alpha \sin\beta-\sin\alpha \cos\beta \
\sin\alpha \cos\beta+\cos\alpha \sin\beta & -\sin\alpha \sin\beta+\cos\alpha \cos\beta
\end{pmatrix}
\end

,whichgives[[F0Glossary/ConcreteConcepts/TrigonometricIdentitiesTrigonometricIdentities]]!