You can't use 'macro parameter character #' in math mode ## Position Vector - Tail is at origin - Aka algebraic vector - If a vector is just a variable, it's a position vector - Can be expressed as $(a, b, c)$ - {component form} or $a\hat{i}+b\hat{j}+\hat{c}k$ - {unit vector form}{ #1705549184819} - $|\vec{u}|=\sqrt{ a^{2}+b^{2}+c^{2} }$ > [!NOTE]- Proof >
You can't use 'macro parameter character #' in math mode- $RAA=\arctan\left( | \frac{b}{a}| \right)$ - Vector $\vec{AB}$ expressed as position vectors is >> $\vec{OB}-\vec{OA}$ { #1705549372900} - Three points are collinear if and only if any two vectors between two points are scalar multiples of each other ## In 3-space - A position vector $\vec{OP}=(a,b,c)$ makes angles $\alpha,\beta,\gamma$ with the x, y, and z axes, respectively - $0\textdegree\leq\alpha\leq 180\textdegree, 0\textdegree\leq\beta\leq 180\textdegree, 0\textdegree\leq\gamma\leq 180\textdegree$ - $|\vec{OP}|=\sqrt{ a^{2}+b^{2}+c^{2} }$ - $\alpha=\cos ^{-1}\left( \frac{a}{\sqrt{ a^{2}+b^{2}+c^{2} }} \right),\beta=\cos ^{-1}\left( \frac{b}{\sqrt{ a^{2}+b^{2}+c^{2} }} \right),\gamma=\cos ^{-1}\left( \frac{c}{\sqrt{ a^{2}+b^{2}+c^{2} }} \right)$ - Components of $\hat{u}$ in terms of $\alpha, \beta, \gamma$ -