Vector

definition

A vector is an array of real numbers x=[x1,x2,,xn], where x1,x2,,xnR

definition

Rn={[x1x2xn]:x1,,xnR}

Notice the : instead of |

x=[x1xn],y=[y1yn]Rn

Vector Operations

Magnitude

\Vert \vec{x}-\vec{y} \Vert & =\Vert -1(\vec{y}-\vec{x}) \Vert \
& =|-1|\Vert \vec{y}-\vec{x} \Vert \
& =\Vert \vec{y}-\vec{x} \Vert
\end

## Position Vector - Tail is at origin - Aka algebraic vector - If a vector is just a variable, it's a position vector - Can be expressed as $(a, b, c)$ - {component form} or $a\hat{i}+b\hat{j}+\hat{c}k$ - {unit vector form}{ #1705549184819} - $|\vec{u}|=\sqrt{ a^{2}+b^{2}+c^{2} }$ > [!NOTE]- Proof >

\begin{align}
|\vec{u}| & =\sqrt{ |a+b|^{2}+c^{2} } \
|a+b| & =\sqrt{ a^{2}+b^{2} } \
|\vec{u}| & =\sqrt{ (\sqrt{ a^{2}+b^{2} })^{2}+c^{2} } \
|\vec{u}| & =\sqrt{ a^{2}+b^{2}+c^{2} }
\end

- $RAA=\arctan\left( | \frac{b}{a}| \right)$ - Vector $\vec{AB}$ expressed as position vectors is >> $\vec{OB}-\vec{OA}$ { #1705549372900} - Three points are collinear if and only if any two vectors between two points are scalar multiples of each other ## In 3-space - A position vector $\vec{OP}=(a,b,c)$ makes angles $\alpha,\beta,\gamma$ with the x, y, and z axes, respectively - $0\textdegree\leq\alpha\leq 180\textdegree, 0\textdegree\leq\beta\leq 180\textdegree, 0\textdegree\leq\gamma\leq 180\textdegree$ - $|\vec{OP}|=\sqrt{ a^{2}+b^{2}+c^{2} }$ - $\alpha=\cos ^{-1}\left( \frac{a}{\sqrt{ a^{2}+b^{2}+c^{2} }} \right),\beta=\cos ^{-1}\left( \frac{b}{\sqrt{ a^{2}+b^{2}+c^{2} }} \right),\gamma=\cos ^{-1}\left( \frac{c}{\sqrt{ a^{2}+b^{2}+c^{2} }} \right)$ - Components of $\hat{u}$ in terms of $\alpha, \beta, \gamma$ -

\begin{align}
\hat{u} & =\frac{\vec{OP}}{|\vec{OP}|} \
& =\frac{1}{\sqrt{ a^{2}+b^{2}+c^{2} }} (a,b,c) \
& =\left( \frac{a}{\sqrt{ a^{2}+b^{2}+c^{2} }}, \frac{b}{\sqrt{ a^{2}+b^{2}+c^{2} }}, \frac{c}{\sqrt{ a^{2}+b^{2}+c^{2} }} \right) \
& =(\cos\alpha, \cos\beta, \cos\gamma)
\end

Prove$cos2α+cos2β+cos2γ=1$

\begin{align}
\hat{u} & =(\cos\alpha, \cos\beta, \cos\gamma) \
|\hat{u}| & =\sqrt{ \cos ^{2}\alpha + \cos ^{2}\beta + \cos ^{2}\gamma } \
1 & =\sqrt{ \cos ^{2}\alpha + \cos ^{2}\beta + \cos ^{2}\gamma } \
1 & =\cos ^{2}\alpha + \cos ^{2}\beta + \cos ^{2}\gamma
\end